2022-07-04-组会
2022-07-04-组会
Gliding Vertex
RSDet
四边形的检测还是挺有意义的,毕竟四边形相比旋转矩形的定位更加精确。
这两篇文章也让我知道了,要想考虑使用四边形检测,需要要考虑标签顺序问题和边界回归问题。
Others
最近使用batchsize = 8重跑了一次ReDet
5月底第一次用batchsize=1来跑
2022-05-31 11:41:46,926 - mmrotate - INFO - Saving checkpoint at 12 epochs
2022-05-31 13:22:35,774 - mmrotate - INFO -
+--------------------+-------+--------+--------+-------+
| class | gts | dets | recall | ap |
+--------------------+-------+--------+--------+-------+
| plane | 18788 | 23259 | 0.896 | 0.799 |
| baseball-diamond | 1087 | 2135 | 0.724 | 0.651 |
| bridge | 4181 | 4962 | 0.584 | 0.470 |
| ground-track-field | 733 | 1090 | 0.618 | 0.556 |
| small-vehicle | 58868 | 110625 | 0.841 | 0.748 |
| large-vehicle | 43075 | 74399 | 0.905 | 0.842 |
| ship | 76153 | 88620 | 0.869 | 0.805 |
| tennis-court | 5923 | 9230 | 0.937 | 0.904 |
| basketball-court | 1180 | 2564 | 0.770 | 0.700 |
| storage-tank | 13670 | 15183 | 0.674 | 0.622 |
| soccer-ball-field | 827 | 2764 | 0.625 | 0.472 |
| roundabout | 973 | 1973 | 0.623 | 0.544 |
| harbor | 15468 | 22735 | 0.791 | 0.687 |
| swimming-pool | 3836 | 8011 | 0.794 | 0.644 |
| helicopter | 1189 | 1946 | 0.807 | 0.765 |
+--------------------+-------+--------+--------+-------+
| mAP | | | | 0.681 |
+--------------------+-------+--------+--------+-------+
2022-05-31 13:22:35,861 - mmrotate - INFO - Exp name: redet_re50_refpn_1x_dota_le90.py
2022-05-31 13:22:35,861 - mmrotate - INFO - Epoch(val) [12][12800] mAP: 0.6807
7月初第二次用batchsize=8(ReDet论文中的同一batchsize)来跑,结果近似。。
好像Batch Normalization在这里并没有提高精度
2022-07-02 19:50:12,213 - mmrotate - INFO - Saving checkpoint at 12 epochs
2022-07-02 20:20:42,710 - mmrotate - INFO -
+--------------------+-------+--------+--------+-------+
| class | gts | dets | recall | ap |
+--------------------+-------+--------+--------+-------+
| plane | 18788 | 39421 | 0.931 | 0.892 |
| baseball-diamond | 1087 | 5512 | 0.857 | 0.711 |
| bridge | 4181 | 25338 | 0.636 | 0.473 |
| ground-track-field | 733 | 6700 | 0.782 | 0.552 |
| small-vehicle | 58868 | 155702 | 0.807 | 0.703 |
| large-vehicle | 43075 | 103456 | 0.882 | 0.766 |
| ship | 76153 | 112373 | 0.839 | 0.790 |
| tennis-court | 5923 | 13502 | 0.932 | 0.901 |
| basketball-court | 1180 | 7586 | 0.714 | 0.615 |
| storage-tank | 13670 | 33506 | 0.696 | 0.615 |
| soccer-ball-field | 827 | 6799 | 0.674 | 0.454 |
| roundabout | 973 | 8810 | 0.733 | 0.549 |
| harbor | 15468 | 30952 | 0.773 | 0.658 |
| swimming-pool | 3836 | 11873 | 0.810 | 0.688 |
| helicopter | 1189 | 3929 | 0.866 | 0.786 |
+--------------------+-------+--------+--------+-------+
| mAP | | | | 0.677 |
+--------------------+-------+--------+--------+-------+
2022-07-02 20:20:42,713 - mmrotate - INFO - Exp name: redet_re50_refpn_1x_dota_le90.py
2022-07-02 20:20:42,713 - mmrotate - INFO - Epoch(val) [12][12800] mAP: 0.6769
本博客所有文章均采用 CC BY-NC-SA 4.0 协议 ,禁止商用,转载请注明出处!