2023-02-09-组会

论文分享

QPDet

Quadrant Point Representation

象限点表达方式:

r2=(w/2)2+(h/2)2r^2 = (w/ 2) ^ 2 + (h / 2) ^ 2

Δα\Delta \alpha 是相对于最上边的点的偏移量, Δβ\Delta \beta是相对于最右边的点的偏移量 ,都是弧度

(v1,v2,v3,v4)(v_1,v_2,v_3,v_4)(x,y,r,Δα,Δβ){(x, y, r, \Delta \alpha, \Delta \beta)}的转换关系:

{v1=(x+rsin(Δα),yrcos(Δα))v2=(x+rcos(Δβ),y+rsin(Δβ))v3=(xrsin(Δα),y+rcos(Δα))v4=(xrcos(Δβ),yrsin(Δβ))\left\{\begin{array}{l}v_1=(x+r \sin (\Delta \alpha), y-r \cos (\Delta \alpha)) \\ v_2=(x+r \cos (\Delta \beta), y+r \sin (\Delta \beta)) \\ v_3=(x-r \sin (\Delta \alpha), y+r \cos (\Delta \alpha)) \\ v_4=(x-r \cos (\Delta \beta), y-r \sin (\Delta \beta))\end{array}\right.

encoder-decoder编码转换:

{δx=(xxa)/2ra,τx=(xxa)/2raδy=(yya)/2ra,τy=(yya)/2raδr=log(r/ra),τr=log(r/ra)δα=Δα,τα=Δαδβ=Δβ,τβ=Δβ.\begin{cases}\delta_x=\left(x^*-x_a\right) / 2 r_a, & \tau_x=\left(x^{\prime}-x_a\right) / 2 r_a \\ \delta_y=\left(y^*-y_a\right) / 2 r_a, & \tau_y=\left(y^{\prime}-y_a\right) / 2 r_a \\ \delta_r=\log \left(r^* / r_a\right), & \tau_r=\log \left(r^{\prime} / r_a\right) \\ \delta_\alpha=\Delta \alpha^*, & \tau_\alpha=\Delta \alpha^{\prime} \\ \delta_\beta=\Delta \beta^*, & \tau_\beta=\Delta \beta^{\prime} .\end{cases}

Result

多尺度训练的精度(Backbone都是Res50-FPN,) Oriented-RCNN是80.87, QPDet是81.00.

无多尺度(Res50-FPN) Oriented-RCNN是75.87 ; QPDet是76.25

Free3Det

(x,y)(x, y)是一个采样点,而不是中心点

(l,t,r,d)(l, t, r ,d)是到外接矩形的距离,就确定了外接矩形的形状

(o1,o2,o3,o4)(o_1, o_2, o_3, o_4)就能间接表示(s1,s2,s3,s4)(s_1, s_2, s_3, s_4),从而确定了旋转矩形框的顶点(v1,v2,v3,v4)(v_1,v_2, v_3, v_4)

(v1,v2,v3,v4)(v_1,v_2,v_3,v_4)(x,y,l,t,r,d,o1,o2,o3,o4){(x, y,l, t, r ,d, o_1, o_2, o_3, o_4)}的转换关系:

v1=({x+o1l,o1<0x+o1r,o10,yt)v2=(x+r,{y+o2t,o2<0y+o2d,o20)v3=({x+o3l,o3<0x+o3r,o30,y+d)v4=(xl,{y+o4t,o4<0y+o4d,o40)\begin{aligned} & \boldsymbol{v}_{\mathbf{1}}=\left(\left\{\begin{array}{ll}x+o_1 * l, & o_1<0 \\ x+o_1 * r, & o_1 \geq 0\end{array}, \quad y-t\right)\right. \\ & \boldsymbol{v}_{\mathbf{2}}=\left(x+r, \quad\left\{\begin{array}{ll}y+o_2 * t, & o_2<0 \\ y+o_2 * d, & o_2 \geq 0\end{array}\right)\right. \\ & \boldsymbol{v}_{\mathbf{3}}=\left(\left\{\begin{array}{ll}x+o_3 * l, & o_3<0 \\ x+o_3 * r, & o_3 \geq 0\end{array}, \quad y+d\right)\right. \\ & \boldsymbol{v}_{\mathbf{4}}=\left(x-l, \quad\left\{\begin{array}{ll}y+o_4 * t, & o_4<0 \\ y+o_4 * d, & o_4 \geq 0\end{array}\right)\right. \\ & \end{aligned}

Result

无多尺度(Res50-FPN) 73.36